Zadania, które dotyczą zakresu materiału, jaki będzie poruszany na lab. 6. Rozwiązanie nie jest wymagane. Zadania stanowią wyłącznie pomoc w przygotowaniu się do zajęć.
Zadanie #1:
Przyjmij, że A, B, C i D reprezentują punkty w przestrzeni n-wymiarowej. Punkty te są reprezentowane w programie przez wektory współrzędnych. Wektor A zawiera dla każdej współrzędnej uzyskaną niezależnie wartość losową z generatora liczb o rozkładzie jednostajnym z przedziału [-10,10]. Wektor B zawiera wartości stałe [1,..,1].
Pobierz od użytkownika liczbę wymiarów przestrzeni n, utwórz odpowiednich rozmiarów wektory, przy czym zainicjuj też odpowiednio A i B, a następnie napisz kod wykonujący kolejno następujące obliczenia:
- D = A*B
- C = 3*B + D
- D = 3*(A+C)-(A*B)
gdzie operator '*’ oznacza mnożenie, przy czym kiedy argumentami są skalar i wektor, następuje przemnożenie wszystkich współrzędnych wektora przez skalar, natomiast w przypadku, kiedy argumentami są dwa wektory, jest to iloczyn Hadamarda (zobacz: https://pl.wikipedia.org/wiki/Mnożenie_macierzy). Sprawdź na danych testowych, czy obliczenia wykonują się poprawnie.
Uwaga: do zaimplementowania w/w operacji nie wykorzystuj żadnych pętli (for, while, repeat
), a wyłącznie algorytmy STL i obiekty funkcyjne (własne lub biblioteczne). Jeżeli to potrzebne, rozłóż operacje na pojedyncze kroki, których wynik zapamiętuj w wektorach pomocniczych.
Zadanie #2:
W celu wygenerowania punktu na powierzchni hipersfery (zobacz: https://pl.wikipedia.org/wiki/Hipersfera) z centrum w środku układu współrzędnych należy wykonać następujące kroki:
- wygenerować wektor Z, którego każda współrzędna jest uzyskaną niezależnie wartością losową z generatora liczb o rozkładzie normalnym. Liczba współrzędnych wektora odpowiada liczbie wymiarów przestrzeni, w której definiowana jest hipersfera,
- policzyć ||Z||, tj. długość wektora Z, a następnie podzielić każdą ze współrzędnych wektora Z przez tę długość.
Nowy wektor Z reprezentuje punkt na powierzchni hipersfery o promieniu 1 z centrum w środku układu współrzędnych.
Wygeneruj wiele takich punktów dla przestrzeni 2-wymiarowej i przedstaw je w postaci graficznej. Sprawdź, czy układają się w kształt okręgu.
Uwaga: do zaimplementowania w/w operacji nie wykorzystuj żadnych pętli (for, while, repeat
), a wyłącznie algorytmy STL i obiekty funkcyjne (własne lub biblioteczne). Jeżeli to potrzebne, rozłóż operacje na pojedyncze kroki, których wynik zapamiętuj w wektorach pomocniczych.