PO2024: Wejściówka na Lab.9

Zadanie wstępne (bez konieczności prezentowania na początku zajęć):

Mamy pustą szklankę oraz gąbkę. Nasączam gąbkę 100 ml wody, po czym trzy razy wyciskam wodę z gąbki do szklanki. Jedno wyciśniecie powoduje, że z gąbki ubywa połowa zawartości wody. Zamodeluj obiektowo w postaci kodu C++ powyższą sytuację.

Zapoznaj się z rozwiązaniem tego zadania: szklanka-i-woda.cpp . Dodaj do tego kodu instrukcje, które pozwolą w oknie konsoli wyświetlić odpowiedź na pytanie: ile wody jest w gąbce a ile w szklance po zakończeniu wyciskania? Aby wyświetlić ilość wody w gąbce skorzystaj z rozwiązania przedstawionego na slajdzie 83 wykładu 8.

Zadanie:

Zaprojektuj klasę, reprezentującą figurę na płaszczyźnie: trapez równoramienny.

Zaproponuj zestaw pól dla tej klasy, pozwalający na jednoznaczne określenie jej położenia na płaszczyźnie względem początku układu współrzędnych oraz jednoznacznie określający jej rozmiary (np. długości boków, podstawy, itd.). Dla uproszczenia przyjmij, że trapez jest zawsze rysowany w określonej pozycji, np. podstawą równolegle do osi X. Projektując zestaw pól postaraj się zminimalizować ich liczbę, dobierając je tak, aby pozostałe brakujące wartości dało się wyznaczyć. Np. gdyby to dotyczyło kwadratu, to do określenia położenia wystarczą współrzędne jednego z wierzchołków, np. lewy-dolny, a do określenia rozmiarów – długość jednego boku. Za pomocą tych wartości jesteśmy już w stanie łatwo wyznaczyć w kwadracie współrzędne wszystkich pozostałych wierzchołków oraz długości pozostałych boków.

Zbiór pól reprezentujących położenie trapezu powinien być rozłączny ze zbiorem pól reprezentujących jego rozmiary, tak aby ewentualne operacje zmiany położenia nie obejmowały modyfikacji pól rozmiaru, a np. skalowanie nie modyfikowało pól położenia. Gdyby to dotyczyło kwadratu, to np. zbiór pól reprezentujących dwa wierzchołki, lewy-dolny i lewy-górny stanowi zły model. Mimo, że pozwala w pełni opisać kwadrat, jednak długość boku jest ukryta w danych o położeniu wierzchołków, więc operacja skalowania rozmiaru modyfikowałaby położenie jednego z wierzchołków.

Wszystkie pola mają być niedostępne z zewnątrz (zadeklarowane jako private).

Do klasy dodaj trzy metody zadeklarowane jako publiczne:

  1. Pierwsza – ma ustalać położenie i rozmiary figury, tj. modyfikować wartości pól opisujących położenie i rozmiar. Nowe wartości dla pól powinny być podawane w argumentach wywołania metody. Metoda powinna kontrolować poprawność wartości podawanych w argumentach wywołania i jeżeli są nieprawidłowe (np. ujemne długości boków) powinna je zastępować bezpiecznymi wartościami domyślnymi.
  2. Druga – powinna wypisywać wartości wszystkich pól figury w oknie konsoli oraz dodatkowo wypisywać aktualne współrzędne wszystkich jej wierzchołków i długości boków wyliczone na podstawie wartości pól.
  3. Trzecia – powinna wyrażać przekształcenie symetrii osiowej względem prostej opisanej równaniem x=n, tj. jako argument powinna przyjmować wartość rzeczywistą n, a w swoim działaniu powinna przeliczyć wszystkie wartości tych i tylko tych pól, które są odpowiedzialne za położenie tak, aby w rezultacie tego działania przyjęły one wartości określające położenie figury po przekształceniu.

Napisz program, który w funkcji main deklaruje obiekt typu trapez, po czym:

  1. inicjalizuje go wartościami pobranymi od użytkownika, tak aby powstał prawidłowy trapez, korzystając z metody nr 1,
  2. wywołuje na rzecz tego obiektu metodę nr 2 wypisującą wszystkie pola i współrzędne w oknie konsoli,
  3. prosi użytkownika o podanie argumentu dla metody symetrii osiowej i wywołuje na rzecz tego obiektu metodę nr 3,
  4. ponownie wywołuje na rzecz tego obiektu metodę wypisującą wszystkie pola i współrzędne w oknie konsoli, aby zobaczyć nowe położenie figury,
  5. ponownie wywołuje na rzecz tego obiektu metodę symetrii osiowej z tym samym argumentem co poprzednio,
  6. a na koniec jeszcze raz wywołuje metodę wypisującą wszystkie pola i współrzędne w oknie konsoli, aby sprawdzić, czy figura wróciła na swoje miejsce.

Przetestowany, działający program (tylko plik z kodem źródłowym) uploaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 9”.

Zadanie wymaga wykazania się umiejętnościami nie tylko programowania obiektowego, ale również modelowania obiektowego. Przystępując do rozwiązania należy najpierw zaproponować model figury geometrycznej zawierający tylko cechy istotne dla działań, jakie są planowane do wykonania na tej figurze (abstrakcja, tj. pomijanie w modelu rzeczy nieistotnych).

PO2024: Wejściówka na Lab.8

Napisz program, który pobiera od użytkownika jego nick oraz niewielką liczbę naturalną. Umieść w kodzie asercję, która sprawdza czy liczba jest rzeczywiście naturalna. Następnie program przystępuje do testu zręczności użytkownika: losuje literę występującą na klawiaturze (nie losuje cyfr, znaków interpunkcyjnych, matematycznych i pozostałych „symboli”) i wypisuje ją w oknie konsoli, po czym oczekuje na naciśnięcie przez użytkownika klawisza odpowiadającego wypisanej literze. Wtedy natychmiast losuje następną literę, wypisuje w oknie konsoli i ponownie czeka na reakcję użytkownika. Jeżeli użytkownik się pomylił, również natychmiast losuje i wypisuje kolejną literę. Program wykonuje test tyle razy, ile wynosiła pobrana liczba naturalna.

Po zakończeniu testu wyświetlany jest czas trwania testu (liczony od wypisania pierwszej litery aż do ostatniej odpowiedzi użytkownika) i liczba trafnych odpowiedzi. Do pomiaru czasu użyj funkcji time i difftime. Dodatkowo zostaje otwarty plik txt o nazwie takiej jak podany nick, tj. „nick.txt” i do niego w kolejnym wierszu są dopisywane uzyskane wyniki (czas i liczba trafień). Jeżeli takiego pliku jeszcze nie ma, program wypisuje w oknie konsoli komunikat o tym, że taki plik jest właśnie zakładany. W komunikacie podana jest pełna ścieżka do folderu, w którym plik zostanie utworzony wraz z jego nazwą. Hint: pełną ścieżkę do bieżącego folderu można pobrać z argv[0].

Każda akcja jest odnotowywana w pliku „log.txt”: pobranie nicka i liczby naturalnej, wypisanie litery na ekranie, odpowiedź użytkownika (wraz z informacją, czy była poprawna). Każdy wpis w pliku „log.txt” zaczyna się od daty i czasu dokonania wpisu z dokładnością do sekund. Następnie wypisywany jest komunikat o zdarzeniu. Plik „log.txt” należy otwierać tak, aby nie stracić jego dotychczasowej zawartości i aby nowe informacje były dołączane na końcu.

Uwagi:

  1. Zaproponuj własny sposób sprawdzenia, czy plik o podanej nazwie istnieje. Następnie napisz funkcję, która jako argument wywołania przyjmuje nazwę pliku, a zwraca wartość zero, jeżeli pliku nie ma, oraz 1 – jeżeli istnieje. Użyj tej funkcji do sprawdzenia, czy plik „nick.txt” istnieje.
  2. Do sprawdzania błędów związanych z dostępem do pliku „log.txt” wykorzystaj stałą errno, a do generowania komunikatów – funkcje strerror i perror. Wszelkie komunikaty o sytuacjach błędnych, jakie wystąpiły w trakcie pracy programu związane np. z dostępem do plików, wysyłaj do standardowego strumienia dla komunikatów o błędach stderr.
    Hint: aby wygenerować np. błąd 13 (brak prawa dostępu do pliku) wystarczy wcześniej otworzyć plik za pomocą edytora typu MS Word albo OpenOffice Writer i pozostawić otwartym. Wtedy próba otwarcia tego pliku w trybie „w”, „a” lub „a+” przez nasz program powinna zakończyć się niepowodzeniem.

Przetestowany, działający program (tylko plik z kodem źródłowym) uploaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 8”.

PO2024: Wejściówka na Lab.7

Przeprowadzono pomiary temperatury w terenie za pomocą czterech czujników temperatury w okresie od 10 lutego do 12 marca. Pomiary były wykonywane przez każdy z czujników co około 5 min. Mierzone wartości zostały zapisane w pliku ( [do pobrania]aby zapisać plik na dysk lokalny użyj prawego przycisku myszki i wybierz opcję „Zapisz element docelowy jako..” lub „zapisz link jako..”). Plik zawiera listę rekordów, gdzie rekord to kolekcja kilku dowolnych wartości, każda ściśle określonego typu, występujących w ustalonej, zawsze tej samej kolejności. Każdy rekord w pliku reprezentuje pojedynczy pomiar i składa się z czterech wartości zapisanych w jednym wierszu pliku: nr pomiaru, nr czujnika, data i czas, oraz zmierzona temperatura, które rozdzielone są znakiem spacji.

W funkcji main pobierz od użytkownika nazwę pliku z danymi, otwórz ten plik w trybie do odczytu, a następnie wczytaj zawartość pliku do listy dynamicznej dwukierunkowej. Po zakończeniu czytania zamknij plik. Przyjmij, że dane w pliku są zawsze poprawne, tj. wiersz zawsze zawiera czwórkę prawidłowych napisów w tej samej kolejności.

Typ danych do przechowywania jednego rekordu ma następującą budowę:

struct pomiar {
    unsigned int nr_pomiaru;
    unsigned int nr_czujnika;
    char data_i_czas[20];
    double temp;
    struct pomiar *nast;
    struct pomiar *poprz;
};

Następnie rozdziel elementy z wczytanej listy na cztery listy dynamiczne dwukierunkowe, po jednej liście dla każdego z czujników. W tym celu zadeklaruj cztery nowe głowy list, tj. wskaźniki typu struct pomiar*, po czym przejrzyj kolejno wszystkie elementy, sprawdź z jakiego czujnika pochodzi pomiar i przenieś ten element do listy właściwej dla tego czujnika. Nie alokuj nowych zmiennych dynamicznych reprezentujących pomiary i nie kopiuj żadnych danych, a jedynie wyjmuj elementy z jednej listy i dodawaj do jednej z pozostałych czterech poprzez działanie na wartościach pól nast i poprz. Na koniec działania lista źródłowa powinna być pusta.

Wypisz w oknie konsoli, ile pomiarów pochodzi z każdego z czujników, tj. jakie są rozmiary każdej z list oraz jakie są wartości najwyższej i najniższej zmierzonej temperatury dla każdego z czujników.

Zapisz powstałe cztery listy do czterech plików o nazwach zaczynających się od tego samego ciągu znaków. W tym celu najpierw pobierz od użytkownika początek nazwy plików do zapisu, następnie dla każdego z plików dodaj do jego nazwy na jej końcu cyferkę odpowiadają numerowi czujnika i dodaj „.txt” (przykład: użytkownik podał „abc”, pliki nazywają się „abc1.txt”, abc2.txt”, „abc3.txt” i „abc4.txt”). Zapisz do każdego z plików zawartość odpowiadającej mu listy w takim samym formacie jaki miał plik wejściowy.

Po zakończeniu zapisywania zamknij pliki, usuń elementy z list i zakończ działanie programu.

Pobierz plik tekstowy z danymi wejściowymi i umieść go we właściwym katalogu. Do obsługi plików wykorzystaj funkcje fopen, fclose, fprintf, fscanf i feof (lub odpowiadających im wersji bezpiecznych). Wszystkie z biblioteki: stdio.h.

Przetestowany, działający program (tylko plik z kodem źródłowym) uploaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 7”.

Różne przykłady zadań dotyczących list dynamicznych jednokierunkowych można znaleźć w materiałach: Zadania z programowania w języku C/C++, cz. I, rozdział 7, dostępnych w https://e.uksw.edu.pl w kursie „Programowanie obiektowe – Wykład”. Zadania można rozwiązywać stosując w rozwiązaniach listy dwukierunkowe.

PO2024: Wejściówka na Lab.6

Przeprowadzono pomiary temperatury w terenie za pomocą czterech czujników temperatury w okresie od 10 lutego do 12 marca. Pomiary były wykonywane przez każdy z czujników co około 5 min. Mierzone wartości zostały zapisane w pliku ( [do pobrania] aby zapisać plik na dysk lokalny użyj prawego przycisku myszki i wybierz opcję „Zapisz element docelowy jako..” lub „zapisz link jako..”). Plik zawiera listę rekordów, gdzie rekord to kolekcja kilku dowolnych wartości, każda ściśle określonego typu, występujących w ustalonej, zawsze tej samej kolejności (zobacz też Wikipedia). Każdy rekord w pliku reprezentuje pojedynczy pomiar i składa się z czterech wartości zapisanych w jednym wierszu pliku: nr pomiaru, nr czujnika, data i czas, oraz zmierzona temperatura, które rozdzielone są znakiem spacji.

W funkcji main pobierz od użytkownika nazwę pliku z danymi, otwórz ten plik w trybie do odczytu, a następnie wczytaj zawartość pliku do listy dynamicznej jednokierunkowej. Po zakończeniu czytania zamknij plik. Przyjmij, że dane w pliku są zawsze poprawne, tj. wiersz zawsze zawiera czwórkę prawidłowych napisów w tej samej kolejności.

Typ danych do przechowywania jednego rekordu ma następującą budowę:

struct pomiar {
	unsigned int nr_pomiaru;
	unsigned int nr_czujnika;
	char data_i_czas[20];
	double temp;
	struct pomiar *nast;
};

Następnie rozdziel elementy z wczytanej listy na cztery listy dynamiczne jednokierunkowe, po jednej liście dla każdego z czujników. W tym celu zadeklaruj cztery nowe głowy list, tj. wskaźniki typu struct pomiar*, po czym przejrzyj kolejno wszystkie elementy, sprawdź z jakiego czujnika pochodzi pomiar i przenieś ten element do listy właściwej dla tego czujnika. Nie alokuj nowych zmiennych dynamicznych reprezentujących pomiary i nie kopiuj żadnych danych, a jedynie wyjmuj elementy z jednej listy i dodawaj do jednej z pozostałych czterech. Na koniec działania lista źródłowa powinna być pusta.

Wypisz w oknie konsoli, ile pomiarów pochodzi z każdego z czujników, tj. jakie są rozmiary każdej z list.

Zapisz powstałe cztery listy do czterech plików o nazwach zaczynających się od tego samego ciągu znaków. W tym celu najpierw pobierz od użytkownika początek nazwy plików do zapisu, następnie dla każdego z plików dodaj do jego nazwy na jej końcu cyferkę odpowiadają numerowi czujnika i dodaj „.txt” (przykład: użytkownik podał „abc”, pliki nazywają się „abc1.txt”, abc2.txt”, „abc3.txt” i „abc4.txt”). Zapisz do każdego z plików zawartość odpowiadającej mu listy w takim samym formacie jaki miał plik wejściowy.

Po zakończeniu zapisywania zamknij pliki, usuń elementy z list i zakończ działanie programu.

Pobierz plik tekstowy z danymi wejściowymi i umieść go we właściwym katalogu. Do obsługi plików wykorzystaj funkcje fopen, fclose, fprintf, fscanf i feof (lub odpowiadających im wersji bezpiecznych). Wszystkie z biblioteki: stdio.h.

Przetestowany, działający program (tylko plik z kodem źródłowym) uploaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 6”.

PO2024: uwaga! zmiana terminu zajęć lab. grupy 3

W związku z Uchwałą Nr 17/2024 Uniwersyteckiej Komisji Wyborczej UKSW z 15.03.2024 w sprawie zwołania zebrania kolegium elektorów Uniwersytetu, w celu dokonania wyboru rektora Uniwersytetu Kardynała Stefana Wyszyńskiego w Warszawie na dzień 25 marca 2024 r., informuję, że ze względu na obowiązkowy udział w tym zebraniu prowadzącego, K. Trojanowskiego, zajęcia lab. z 25.03.2024 r., w godz. 15:00-16:30 zostają przełożone na 22 marca (piątek) w godz. 13:15-14:45, w pracowni 1221, bud.12.

Ze względu na zmianę terminu zajęć wejściówka nie będzie wymagana. Warto ją jednak zrobić, ponieważ zadanie na zajęciach będzie miało znaczną część wspólną z zadaniem z wejściówki.

PO2024: Wejściówka na Lab.5

Napisz funkcję bin2int, która jako argument przyjmuje wskaźnik do tablicy znaków (np. char* t) przechowującej liczbę zapisaną w postaci binarnej w taki sposób, że pierwszym znakiem musi być zawsze '1′, tj. np. 1001, 100, 10101111, 1110010, itp., i która zwróci wartość typu int odpowiadającą podanej liczbie binarnej (np. dla 1001 będzie to wartość 9).

Następnie napisz program, który:

  1. Do dwuwymiarowej tablicy dynamicznej podobnej do tej prezentowanej na slajdach 143 i 144, wykład 4, ale przechowującej dane typu char i o wymiarach m wierszy na n kolumn (m i n podane przez użytkownika), wczyta z pliku tekstowego kilka liczb zapisanych w postaci binarnej. W każdym wierszu pliku znajduje się jedna liczba zapisana w taki sposób, że pierwszą cyfrą musi być zawsze 1, tj. np. 1001, 100, 10101111, 1110010, itp. Tak zapisane liczby mogą mieć różną liczbę znaków, ale nie większą niż n-1. W każdym wierszu tablicy przechowywana będzie jedna wczytana liczba. Przyjmij, że liczba wierszy w pliku nie jest znana, ale nie większa niż m, tak aby było wiadomo, że dane zmieszczą się w tablicy.
  2. Po zakończeniu wczytywania wywoła dla każdego ciągu binarnego z tablicy funkcję bin2int, która zwróci wartość typu int odpowiadającą podanej liczbie binarnej. Zwrócona wartość na być wypisana w oknie konsoli.
  3. Posortuje wczytane ciągi binarne w taki sposób, aby liczby całkowite reprezentowane przez ciągi były uporządkowane malejąco. Przemieszczenia ciągów binarnych nie dokonuj poprzez kopiowanie wartości z jednych tablic dynamicznych do drugich, ale poprzez zamianę położeń wartości wskaźników do dynamicznych tablic przechowujących ciągi binarne. To ważne: aby zmienić porządek, nie wykonuj żadnych alokacji nowych tablic dynamicznych, a jedynie zamieniaj adresy w komórkach tablicy wskaźników. Zastosuj dowolne sortowanie, np. sortowanie przez wybór. Uwaga: przygotuj swój program również na sytuację, kiedy plik z liczbami był pusty.
  4. Po zakończeniu przestawiania jeszcze raz wypisze w oknie konsoli wartości liczbowe dla wszystkich ciągów binarnych w tablicy ułożonych wg nowego porządku korzystając z funkcji bin2int.

Przetestowany, działający program (tylko plik z kodem źródłowym) uploaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 5”.

Hint:

Algorytm sortowania przez wybór:

  1. Ustaw: i = 0
  2. Wyszukaj w tablicy minimalną wartość spośród elementów od i do końca tablicy
  3. Zamień znalezioną wartość minimalną, z wartością na pozycji i w tablicy
  4. Wykonaj: ++i; jeżeli i jest indeksem ostatniego elementu w tablicy to zakończ, w przeciwnym przypadku wróć do kroku nr 2.

PO2024: Wejściówka na Lab.4

Napisz program, który będzie wczytywał dane z jednego pliku tekstowego i zmienione zapisywał do drugiego. W tym celu:

  1. Zadeklaruj strukturalny typ danych struct para zdefiniowany tak, że zmienna takiego typu może przechowywać dwie wartości: napis oraz liczbę. W funkcji main zadeklaruj lokalną tablicę o długości 5, zawierającą elementy typu struct para.
  2. Napisz funkcję wiersz, która będzie odczytywała dane z jednego wiersza w już otwartym pliku. W wierszu zapisane są kolejno: nr indeksu studenta, nazwisko i ocena. Funkcja odczytuje dane z jednego wiersza, następnie ignoruje odczytany nr indeksu a do komórki tablicy wpisuje w odpowiednich polach tylko nazwisko i ocenę. Przyjmij, że w pliku może być dowolna liczba wierszy (jest możliwe również, że plik jest pusty), ale nie większa niż rozmiar tablicy. Przyjmij też, że dane w pliku są zawsze poprawne, tj. wiersz zawsze zawiera trójkę prawidłowych napisów w tej samej kolejności: numer, nazwisko i ocena.
    Nagłówek funkcji ma wyglądać tak:
    int wiersz(FILE* f, struct para *p)
    gdzie f to wskaźnik do otwartego pliku, natomiast p to wskaźnik do komórki tablicy, do której mają zostać zapisane dane z jednego odczytanego wiersza pliku. Funkcja zwraca wartość zero, jeżeli odczyt zakończył się pomyślnie, a wartość 1, jeżeli nie udało się odczytać kolejnej porcji danych ze względu na koniec pliku.
  3. W funkcji main pobierz od użytkownika nazwę pliku z danymi oraz nazwę pliku wyjściowego. Otwórz plik z danymi w trybie do odczytu, a plik wynikowy w trybie do zapisu. Następnie w pętli za pomocą funkcji wiersz odczytaj kolejne wiersze pliku zapisując dane w kolejnych komórkach tablicy. Każdą odczytaną komórkę tablicy zapisz od razu do pliku wynikowego tak, aby w kolejnych wierszach pliku znalazły się pary: nazwisko i ocena. Uwaga: nazwisko należy zapisać do pliku w postaci zaszyfrowanej, tj. należy zastąpić wszystkie samogłoski znakiem '*’. Jeżeli nie wszystkie komórki tablicy zostały zapełnione danymi, zapisz do pliku tylko tyle, ile zostało odczytanych z pliku wejściowego. Po zakończeniu pętli zamknij pliki, wyświetl w oknie konsoli zawartość tablicy i zakończ działanie funkcji main.
    Uwaga: kod odczytujący dane z pliku napisz w dwóch wariantach: kiedy użytkownik na koniec ostatniego wiersza pliku wejściowego dodał znak nowej linii oraz kiedy go nie dodał (zobacz slajdy 100-103, wykład 3). Na początku funkcji main użytkownik określa, który wariant wybiera, tj. wskazuje czy plik wejściowy ma na końcu ostatniej linii znak nowej linii czy nie.
  4. Przygotuj sobie odpowiednie dwa pliki tekstowe z prawidłowymi danymi wejściowymi w kilku wierszach i umieść je we właściwym folderze. Następnie przetestuj program. Zobacz jak zachowa się twój program, kiedy wskażesz niepoprawnie wariant pliku wejściowego.

Do obsługi plików wykorzystaj funkcje: fopen, fclose, fprintf, fscanf i feof. Wszystkie z biblioteki: stdio.h.

Przetestowany, działający program (tylko plik z kodem źródłowym) uploaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 4”.

Różne przykłady zadań i problemów dotyczących tego rodzaju zastosowań można znaleźć w podręcznikach lub na forach, których tematem jest programowanie w ANSI C (np. Zadania z programowania w języku C/C++, cz. I, rozdział 8). Dobre słowa kluczowe dla wyszukiwarki na najbliższy tydzień to: fopen, fclose, fprintf, fscanf i feof w połączeniu z ansi c. Oczywiście niczego nie należy brać bezkrytycznie, każdy kawałek kodu warto zweryfikować wklejając do okna VC++ i sprawdzając, jak naprawdę działa.

Hint:

Przygotowując się na lab. nr 4 warto przypomnieć sobie jak skonstruowany jest C-napis, sprawdzić jak działa szyfr Cezara, oraz zapoznać się z funkcjami:

  • int isalpha(int c)
  • int islower(int c)
  • int isupper(int c)
  • int tolower(int c)
  • int toupper(int c)

Funkcje znajdują się w bibliotece ctype.h i służą do sprawdzania, czy dany znak jest literą i jakiego rodzaju (dużą czy małą) oraz do zamiany dużych liter na małe i małych na duże. Zadania pierwszego poziomu na lab. 4 mogą mieć wspólne fragmenty z zadaniami poziomu 2 lab. nr 3, tj. będą dotyczyły konwertowania napisów do postaci zaszyfrowanych wg różnych reguł, oraz oczywiście będą dotyczyły pracy na plikach tekstowych (materiał ostatnio omawiany na wykładzie).

PO2024: Wejściówka na Lab.3

Zadeklaruj strukturalny typ danych, który będzie zawierał dwa pola: napis oraz liczba całkowita. W funkcji main zadeklaruj lokalną tablicę o niewielkiej długości (np. 5), zawierającą elementy typu takiego, jak zdefiniowana wcześniej struktura.

Następnie napisz funkcję, która jako argument wywołania przyjmuje tę tablicę. Kod funkcji sprawdza, czy w każdej z komórek tablicy pole liczbowe nie zawiera wartości mniejszej (ale dodatniej) od długości napisu przechowywanego w drugim polu. Jeżeli tak, skraca napis do długości takiej, jak wartość w polu liczbowym. W przeciwnym przypadku pozostawia napis niezmieniony. Takie sprawdzenie i skracanie wykonuje się dla wszystkich komórek tablicy. Po przejrzeniu całej tablicy funkcja zwraca liczbę skróceń, jakie rzeczywiście zostały wykonane.

Napisz w funkcji main kod, który pozwala użytkownikowi wprowadzić wartości do obydwu pól w każdej z komórek tej tablicy. W main, poniżej kodu wprowadzającego dane umieść wywołanie funkcji skracającej napisy w tablicy, przy czym argumentem wywołania jest tablica, do której dane zostały właśnie przez użytkownika wprowadzone. Na koniec dopisz kod wyświetlający nową zawartość tablicy (w kolejnych wierszach pary: liczba i napis) oraz zwróconą przez funkcję liczbę faktycznie wykonanych skróceń.

Kod przetestowanego, działającego programu załaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 3”, tak aby na początku zajęć można go było szybko pobrać, skompilować i zademonstrować działanie.

PO2024: tworzenie nowego programu

W pracowniach komputerowych na stanowiskach zainstalowany jest Visual Studio Enterprise 2017. Jest to starsza, ale nadal wspierana wersja środowiska programistycznego. Wersje instalacyjne starszych wersji są do pobrania tutaj: https://visualstudio.microsoft.com/pl/vs/older-downloads/

Pobranie wymaga zalogowania się.

Kody programów napisanych w nowszej, np. aktualnej wersji środowiska kompilują się w Visual Studio Enterprise 2017, jeżeli nie korzystają z konstrukcji języka C++ nie obsługiwanych przez VS2017. Przy czym program zajęć lab. nie przewiduje korzystania z takich konstrukcji składniowych.

Aby rozpocząć pisanie programu należy uruchomić środowisko VS i utworzyć nowy projekt. Poniżej są opisane dwie możliwości postępowania – do wyboru.

Postępowanie #1:
Nowy projekt typu „Pusty projekt”

Pusty projekt

Zostanie utworzony projekt nie zawierający żadnych plików:

Pusty projekt

1.1 Do tak utworzonego projektu możemy dodać pierwszy plik, w którym zamierzamy umieścić kod naszego programu. Można to zrobić klikając prawym klawiszem myszki na „Pliki źródłowe” w okienku prezentującym projekt, a następnie „Dodaj” i „nowy element”:

Dodaj nowy element

W otwartym oknie należy wybrać „Plik C++”. Utworzony zostanie plik z rozszerzeniem 'cpp’, który będzie traktowany przez kompilator jako plik zawierający kod napisany w C++.

1.2. Jeżeli mamy już wcześniej przygotowany plik z kodem źródłowym, np. z rozwiązaniem Wejściówki, albo utworzyliśmy w innym edytorze (lub ręcznie) plik z rozszerzeniem 'c’ lub 'cpp’, i chcemy go dołączyć do tak utworzonego projektu, należy kliknąć prawym klawiszem myszki na „Pliki źródłowe” w okienku prezentującym projekt, a następnie „Dodaj” i „istniejący element”, po czym znaleźć właściwy plik i wskazać go do dołączenia do projektu:

Dodaj istniejący element

Dobrze jest wcześniej, tzn. przed dołączeniem, umieścić już przygotowany plik we właściwym folderze. To ułatwi jego dołączenie do projektu. Aby szybko znaleźć ten folder, należy kliknąć prawym klawiszem myszki na nazwę projektu w okienku prezentującym projekt (np. na „Project1”) i wybrać opcję „Otwórz folder w eksploratorze plików”:

Folder projektu

Zostanie otwarte okno Eksploratora plików prezentujące folder, gdzie powinien trafić plik.

Postępowanie #2:
Nowy projekt typu „Aplikacja konsolowa systemu Windows”

Aplikacja konsolowa

Wybierając tę opcję, zostanie utworzony projekt zawierający cztery pliki:

Projekt aplikacja konsolowa

W załączonym przykładzie miejscem, gdzie należy pisać kod programu, jest plik „ConsoleApplication1.cpp”. Do projektu należy też plik „stdafx.h”. Jest to tzw. wstępnie skompilowany plik nagłówkowy. To niestandardowa, autorska konstrukcja Microsoftu, której celem jest przyspieszenie procesu kompilacji dużych projektów. Do tej konstrukcji należą też pliki „stdafx.cpp” i „targetver.h”.

Po podwójnym kliknięciu na „ConsoleApplication1.cpp” zostanie otwarte okno z prostym programem:

Kod programu

Linijki zawierającej dyrektywę #include "stdafx.h" nie należy usuwać. Microsoft rekomenduje, aby dyrektywy dołączenia niezbędnych standardowych bibliotek, np. #include "stdlib.h", umieścić w pliku stdafx.h w miejscu poniżej już istniejących dyrektyw #include. Natomiast dyrektywy dołączenia niezbędnych bibliotek własnych można umieścić w „ConsoleApplication1.cpp” poniżej dyrektywy #include "stdafx.h".

Jeżeli chcemy do tak utworzonego pliku wkleić kod z pliku Wejściówki, który został napisany bez korzystania z dyrektywy #include "stdafx.h", należy ten kod w całości wkleić poniżej tej dyrektywy, zastępując nim treść wygenerowaną automatycznie przez VS. Po wklejeniu nie należy edytować dyrektywy #include "stdafx.h", ani niczego przed nią dopisywać (powinna pozostać jako pierwsza linijka programu).

Jeżeli plik zawierający kod Wejściówki został utworzony w projekcie typu „Aplikacja konsolowa Windows”, należy ten plik dołączyć do sekcji „pliki źródłowe” w projekcie bez wprowadzania w nim żadnych zmian oraz usunąć z tej sekcji automatycznie tworzony plik „ConsoleApplication1.cpp”.

Hint: dobrym pomysłem jest unikanie mieszania typów projektów, tj. np. jeżeli Wejściówka została utworzona, napisana i przetestowana w projekcie typu „Aplikacja konsolowa Windows”, to projekt takiego samego typu należy utworzyć w pracowni, żeby ją zaprezentować.

Na koniec – co zrobić, żeby okno konsoli nie zamykało się po wykonaniu naszego programu?

Postępowanie #1:

W Solution Explorer kliknąć prawym klawiszem myszy na nazwę projektu (nie przestrzeni roboczej). Potem wybrać Properties (Właściwości). Pojawi się okno, w którym po lewej stronie trzeba kolejno rozwinąć Configuration Properties->Linker->System (Właściwości konfiguracji->Konsolidator->System), a potem z prawej strony kliknąć na pole SubSystem (Podsystem). Pojawi się wówczas rozwijana lista, z której wybieramy Console (/SUBSYSTEM:CONSOLE).

Postępowanie #2:

Na końcu funkcji main, w linijce tuż przed poleceniem return dopisać instrukcję:

system("pause");

i dołączyć bibliotekę stdlib.h .

PO2024: Wejściówka na Lab.2

Napisz program szyfrujący tekst wprowadzany przez użytkownika. W tym celu przygotuj tablicę dwuwymiarową A o wymiarze 5 na 5 przechowującą wartości typu char, oraz tablicę jednowymiarową B, przechowującą wskaźniki do zmiennych typu char. Do wszystkich komórek tablicy B wpisz wartości NULL, a do tablicy A wpisz litery alfabetu (z pominięciem liter zawierających znaki diakrytyczne: ą, ć, ę, ł, ń, ó, ś, ź, ż), np. tak:

a f k p v
b g l r w
c h m s x
d i n t y
e j o u z

Następnie wczytaj od użytkownika ciąg znaków bez spacji, reprezentujący dowolny napis składający się tylko ze znaków z tablicy A, którego długość jest mniejsza niż długość tablicy jednowymiarowej B. Zakładamy przy tym, że dane wprowadzane przez użytkownika są zawsze poprawne co do ich wartości i rozmiaru. Napis wczytaj poleceniem scanf do pomocniczej tablicy. Następnie dla każdej kolejnej litery wczytanego napisu znajdź w tablicy A komórkę, przechowującą tę literę, po czym adres znalezionej komórki w A zapisz w odpowiedniej komórce tablicy B (tj. adres pierwszej litery – w pierwszej komórce B, adres drugiej litery – w drugiej, itd.). Po zakończeniu tablica B powinna zawierać wskaźniki do odpowiednich komórek tablicy A z kolejnymi literami wprowadzonego napisu. Jeżeli długość tablicy B jest większa niż długość wczytanego słowa, pozostałe komórki tablicy B przechowują wartość NULL.

Wypisz w oknie konsoli napis podany przez użytkownika korzystając tylko z tablicy B, tj. za pomocą wskaźników z B sięgaj do odpowiednich komórek w A i wypisz ich zawartość kolejno na ekranie.

Następnie zaszyfruj napis poprzez przestawienie wartości w wierszach tablicy A. Przykładowe przestawienie to przesunięcia wartości: z wiersza 1 do 2, z 2 do 3, z 3 do 4, z 4 do 5, a z 5 do 1, np. tak:

e j o u z
a f k p v
b g l r w
c h m s x
d i n t y

Po przestawieniu wierszy ponownie wypisz w oknie konsoli napis korzystając ze wskaźników z tabeli B.

Na koniec przywróć w tablicy właściwy porządek wierszy i jeszcze raz korzystając z tablicy B wypisz napis, tym razem w postaci odszyfrowanej.

Przetestowany, działający program (tylko plik z kodem źródłowym) uploaduj do https://e.uksw.edu.pl jako rozwiązanie zadania „Wejściówka” w sekcji „Temat 2”, tak aby na początku zajęć można go było szybko pobrać, skompilować i zademonstrować działanie.

PS: szczegółowe reguły pracy na zajęciach lab. są dostępne pod adresem:
https://ktrojanowski.blog.uksw.edu.pl/programowanie-obiektowe/zasady-zaliczenia-lab/zasady-dla-zadan-lab/